
Regulated Re-writing

In a given grammar , re-writing can take place at a step of a derivation by 
the usage of any applicable rule in any desired place. That is if A is a 
nonterminal occurring in any sentential form say               , the rules being A 

A 

A 

then any of these two rules are applicable for the occurrence of A in           . 
Hence, one encounters nondeterminism in its application. One way of naturally 
restricting the nondeterminism is by regulating devices, which can select only 
certain derivations as correct in such a way that the obtained language has 
certain useful properties. For example, a very simple and natural control on 
regular rules may yield  a non regular language . 

A 



While defining the four types of grammars, we put restrictions in the form of 
production rules to go from type 0 to type 1 , then to type 2 and type 3 . In this 
chapter we put restrictions on the manner of applying the rules and study the 
effect . There are several methods to control re-writing , some of the standard 
control strategies are as follows  



A matrix grammar is a quadruple G = (N,T,P,S) where N , T and S are as in any 
Chomsky grammar. P is a finite set of sequences of the form :  

 1 1 2 2 ,, ..........., n nm         

with                                                 m is a 
member of P and a ‘matrix’ of P.                                                          

1,n  *( ) , ( ) ,1 .i iN T N T i n     

G is a matrix grammar of type i, where                          if and only if the

grammar                                          is of type i for every

 0,1,2,3 ,i
 , , ,mG N T m S .m P

Similarly , G is                      if each           is  free  mG free 

Matrix Grammar 



Definition 1

Let                                       be      a  matrix grammar. For any two strings

we write                  ( or if there is no confusion 

on G ), if and only if there are strings                        in  

 , , ,G N T P S
 , ,u v N T  

G
u v u v

0 1 2, , ,.........., nu u u u  N T 
and a matrix                 such that                          and   m M 0 , nu u u v 

' '' ' ''
1 1 1 1 1,i i i i i i i iu u x u u u y u     

for some                    for all                             and   
' ''

1 1,i iu u  0 1i n   ,1 .i ix y m i n   

Clearly , any direct derivation in a matrix grammar G corresponds to an n-

step derivation by                                           That is, the rules in m are used in , , , .mG N T P S

sequence to reach               is the reflexive, transitive closure of          and  .v * 

   *,L G w w T S w  *



Definition 2

Let                                       be a matrix grammar . Let F be a subset of rules 
of M . We  now use the rules of F such that , the rules in F can be passed 
over if they cannot be applied , whereas the other rules in any matrix                  
not in F must be used. That is, for 

 , , ,G N T P S

m P

if and only if there are strings                                and a matrix                    

with rules                                  (say) , with  
0 1, ,........., nu u u m M

 , , ,u v N T u v 
m

 1 2, ,........., nr r r

i ix y 1 .i n 

Then , either                                                   or the rule 

Then 

' ''
1 1 1i i i iu u x u   ' ''

1 1, i i i iu u y u 
.i ix y F  1i iu u 

:ir



This restriction by F on any derivation is  denoted as          ,  where ‘ac’ stands 
for ‘appearance checking’ derivation mode. Then ,  


ac

   *, / ,L G F w S w w T  *
ac

Let                       denote the family of matrix languages without appearance 
checking (with appearance checking ) of type 2 without  

 acM M
.rules 

Let                         denote the family of matrix languages without 

appearance checking (with appearance checking ) of type 2 with  

 acM M 

.rules 



Example 1

Let                                       be a matrix grammar where   , , ,G N T P S

 , , , ,N S A B C D

 , , ,T a b c d

 1 2 3 4, , , ,P P P P P where 

 1 :P S ABCD

 2 : , , ,P A aA B B C cC D D   

 3 : , , ,P A A B bB C C D dD   

 4 : , , ,P A a B b C c D d   



Some sample derivations are : 

1 2 4p p p
S ABCD aABcCD aabccd  

1 2 3 4p p p p
S ABCD aABcCD aAbBcCdD aabbccdd   

We can see that the application of matrix P2 produces an equal number of a’s 
and c’s , application of P3 produces an equal number of b’s and d’s . P4 
terminates the derivation . Clearly 

   | , 1 .n m n mL G a b c d n m 

The rules in each matrix are context free , but the language generated is 
context-sensitive and not context-free.



Example 2

Let                                       be a matrix grammar with   , , ,G N T P S

 , , , ,N S A B C

 ,T a b

 1 2 3 4 5, , , , ,P P P P P P where 

 1 :P S ABC

 2 : , ,P A aA B aB C aC  

 3 : , ,P A bA B bB C bC  

 4 : , ,P A a B a C a  

 5 : , ,P A b B b C b  



Some sample derivations are : 

1 2 3 4p p p p
S ABC aAaBaC abAabBabC abaabaaba   

1 3 2 5p p p p
S ABC bAbBbC baAbaBbaC babbabbab   

clearly

    | , .L G www w a b  



Programmed Grammar 

A Programmed Grammar is a 4-tuple                                 , where N , T and S 
are as in any Chomsky grammar  . Let r be a collection of re-writing rules 
over                , lab (R) being the labels of R .       and are mappings from 

lab(R) to 

 , , ,G N T P S

N T 
 2lab R



     , , |P r r r r R  

Here , G is said to be type i, or                          if the rules in R are all type i , 

where i = 0,1,2,3 or                        , respectively. 

free 
free 



Definition 3

For any x, y over                       , we define derivation as below : *N T

(i) if and only if                for                   

are over               and                                and 

and     

   1 2, ,u r v r 1 2 1 2,u u xu v u yu  1 2,u u
N T     1 1 1: , ,r x y r r P  

 2 1r r

ac(ii)                                 if and only if             holds , or else u=v 

if                                                    is not applicable to u , i.e., x is not a               

sub word of u and                        Thus,          only depends on   

   1 2, ,u r v r    1 2, ,u r v r

    1 1 1: , ,r x y r r 
 2 1 .r r 

ac 

Here,               is called the success field as the rule with label r is used in the 
derivation step .             Is called the failure field as the rule with label r cannot 
be applied and we move on to a rule with label in   

 r
 r

 .r



are the reflexive and transitive closures of          and           , 

respectively.   


ac


The language generated is defined as follows : 

        *
*

1 1 2 1 2, | , , , ,L G w w T S r w r for some r r lab P    

       
*

*
1 1 2 1 2, , | , , , ,

ac
L G w w T S r w r for some r r lab P      

 


Let                   denote the family of programmed languages without (with) 
appearance checking of type 2 without                    . 

 acP P
rules 

Let                   denote the family of programmed languages without (with) 
appearance checking of type 2 with                    . 

 acP P 

rules 

*
,

*

ac




Example 3 

Let                                       be a programmed  grammar with   , , ,G N T P S

 , , , ,N S A B C D

 , , ,T a b c d

:P

r  r  r

1.         S           ABCD                         2,3,6 

2.         A           aA 4

3.         B           bB 5

4.         C           cC 2,3,6








5.         D           dD 2,3,6

6.         A           a                                 7

7.         B           b                                 8

8.         C           c                                 9

9.         D          d                         

r  r  r









1 2 4 6

7 8 9

S ABCD aABCD aABcCD aaBcCD

aabcCD aabccD aabccd

   

  

   | , 1n m n mL G a b c d n m 

Let    1,2,3,4,5,6,7,8,9 .lab F 

Some sample derivations are 

1 6 7 8 9
S ABCD aBCD abCD abcD abcd    



Example 4

Let                                       be a programmed  grammar with   , , ,G N T P S

 , , ,N S A B C

 ,T a b

:P
r  

1.         S           ABC                           2,5,8,11

2.         A           aA 3

3.         B           aB 4

4.         C           aC 2,5,8,11








5.         A           bA 6

6.         B           bB 7

7.         C           cB 2,5,8,11

8.         A           a                                 9

9.         B           a                                 10

10.         C          a                                 

11.         A           b                                 12

12.         B           b                                 13

13.         C           b                                 

r  
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Random Context grammar

A Random context grammar has two sets of nonterminals X , Y where the set 
X is called the permitting context and Y is called the forbidding context of a 
rule              . x y



is a random context  grammar where N ,T and S are  
as in any Chomsky grammar , where 

 , , ,G N T P S

  , , | , ,p x y X Y x yis a ruleover N T X Y are subsetsof N   

 
*

*: , .L G w S w w T   
 

As before, L is of type i, whenever G with rules               in P are of type i ,  
i=0,1,2,3, respectively.  

x y

Definition 4

We say                if and only if                            for               over

such that all symbols X appear in and appears in               

and no symbol of Y appears in                         is the reflexive transitive closure 
of        .   

G
u v ' '' ' '',u u xu v u yu  ' '',u u N T



' ''u u
' '', .u u *

 , ,x y X Y



Example 5

Consider the random context grammar  , , ,G N T P S where 

 , , ,N S A B C
 T a

     
     
  

, , , , , , , ,

, , , , , , , , .

, , , , ,

S AA B D A B S D

p B S A D A D S B

D a S A B

 

 



  
     
 

  
Some sample derivations are 

S AA DA DD aD aa    

4

S AA BA BB SB SS
AAS AAAA a

    

  

   2 | 1 .
n

L G a n 



Time varying Grammar 

Given a grammar G , one can think of applying a set of rules only for a 
particular period . That is, the entire set of P is not available at any step of a 
derivation . Only a subset of P is available at any time ‘t’ or at any i-th step of a 
derivation.  

Definition 5

A time-varying grammar of type i ,                        is an ordered pair   0 3,i   ,G 
where                                   is a type i grammar  , and      is a mapping of 
the set of natural numbers into the set of subsets of P .       

holds if and only if: 

 , , ,G N T P S 
   , ,u i v j

1j i and 

2. There are words                        over                 such that                           

and                   is a rule over  in  
1 2, , ,u u x y N T 1 2 ,u u xu

1 2v u yu x y N T  .i

1.



be the reflexive , transitive closure of        and 
*

 

      , | ,1 ,L G w S w j  * for some *,j N w T 

A language L is time varying of type i if and only if for some time varying

grammar                  is of type i with  ,G   , .L L G 



Definition 6

Let              be a time varying grammar . Let F be a subset of the set of 

productions P . A relation           on the set of pairs (u , j) , where u is a word  

over              and j is a natural number which is defined as follows : 

 ,G 
ac

N T

   1 2, ,
ac

u j v j holds , if 

   1 2, ,u j v j holds , or else ,  

2 1 1 , ,j j u v   and for no production 

x y in                        ,x is a subword of u. 1F j



is the reflexive , transitive closure  of           . Then , the language 

generated by               with appearance checking for productions in F is defined 
as : 

*ac ac
 ,G 

      *
*, , | | ,1 ,ac ac

L G F w w T S w j for some j   

The family of languages of this form without appearance checking when the    
rules are context free ( context-free and                    )  and       is a periodic

function are denoted as        and       , respectively. With appearance checking, 

they are denoted as          and          , respectively. 

free  

ac
 ac

 



Example 6

Let               be a periodically time varying grammar with  ,G 

 , , ,G N T P S
 1 1 1 2 2 2, , , , , ,N S X Y Z X Y Z

 ,T a b

           1 2 3 4 5 6P           

   1 1 1 1 1 1 1 1 2 21 , , ,S aX aY aZ S bX bY bZ X X Z Z     

   1 1 1 2 2 1 2 2 1 22 , , , , ,X aX X bX X aX X bX X X        

   1 1 1 2 2 1 2 2 1 23 , , , , ,Y aY Y bY Y aY Y bY Y Y        

   1 1 1 2 2 1 2 2 1 24 , , , , ,Z aZ Y bZ Z aZ Z bZ Z Z        

where 

where 



   2 2 1 15 ,X X Y Y   

   2 2 1 16 ,Y Y Z Z   

Some sample derivations are a

         1 1 1 1 1 1,1 ,2 ,3 ,4 ,5S aX aY aZ aaY aZ aaaZ aaa   

       
   
   
   
 

1 1 1 1 1 1 1 2 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

,1 ,2 ,3 ,4

,5 ,6

,7 ,8

,9 ,10

,11

S bX bY bZ baX bY bZ baX baY bZ

baX baY baZ baX baY baZ

baX baY baZ baX baY baZ

babaY baZ bababaZ

bababa

  

 

 

 



    , | ,L G www w a b  



Example 7

Let                be a periodically time varying grammar with  ,G 

 , , ,G N T P S

 1 2 1 2 1 2 1 2, , , , , , , , , , , ,N A B C D S A A B B C C D D

 , , ,T a b c d

 
8

1
: ,

i
P iU


where

   1 21 , ,S aAbBcCdD D D A A    

   1 1 22 , ,A aA A A A    



   1 23 , ,B B B bB B    

   1 24 , ,C cC C C C    

   1 25 , ,D D D dD D    

   1 26 ,A A B B   

   1 27 ,B B C C   

   1 28 ,C C D D   

   , | , 1 .n m n mL G a b c d n m  



Regular Control Grammars 

Let G be a grammar with production set P and lab(P) be the labels of 
productions of P. To each derivation D  , according to G , there corresponds a 
string over lab(P) (the so called control string ) . Let C be a language over 
lab(P) . We define a language L generated by a grammar G such that every 
string of L has a derivation D with a control string from C. Such a language is 
said to be a controlled language .

Definition 7

Let                                    be a grammar . Let lab(P) be the set of labels of 
productions in P . Let F be a subset of P . Let D be a derivation of G and K 
be word over lab(P) . K is a control word of D , if and only if the following 
conditions are satisfied : 

 , , ,G N T P S



1. For some string                              over               and K=f,      

where                                         and         has a label  f. 
1 2, , , , ,u v u u x y N T , :D u v

1 2u u xu 1 2,v u yu x y

2. For some u, x, y , D is a derivation of a word ‘u’ only and               or else           

, where                 has a label            and x is not a sub word of u. 

K 
K f x y

3. For some                                   D is a derivation ,where 

and               uses           as control string and                  uses           

as control string.

1 2, , , , ,u v w K K u v w * *

1 2K K K u v* 1K v w* 2K

Let C be a language over the alphabet lab(P). The language generated by G 
with control language C with appearance checking rules F is defined by : 

   *, , | : ,acL G C F w T D S w Dhasacontrol word K of C  *

f F



If                 the language generated is without appearance checking and denoted 
by  L(G,C)

F 

Whenever C is regular and G is of type i , where i = 0 , 1, 2 , 3 , then G is said to 
be a regular control grammar of type i. 

Let                       denote a family of type i languages with type j control with 
k=0 , 1. k=0 denotes without appearance  checking; k=1 denotes with 
appearance checking. 

 , ,i j kL



Example 8

Let                                     be a regular control grammar where  , , ,G N T P S

 , , , ,N A B C D S

 , , ,T a b c d

:P

1. S ABC

2. A aA
3. B bB
4. C cC

5. D dD



6. A a
7. B b

8. C c

9. D d

   1,2,3,4,5,6,7,8,9lab P Then, 

   * *1 24 35 6789.K Let, Clearly , K is regular. Then 

   , | , 1n m n mL G K a b c d n m 

Some sample derivations are :

124356789 ,u K for



1 2 4 3

5 6 7

8 9

S ABCD aABCD aABcCD aAbBcCD

aAbBcCdD aabBcCdD aabbcCdD

aabbccdD aabbccdd

   

  

   

   

If 124246789u K 

1 2 4 2

4 6 7

8 9

S ABCD aABCD aABcCD aaABcCD

aaABccCD aaaBccCD aaabccCD

aaabcccD aaabcccd

   

  

 

 



Example 9

Let                                       be a grammar with   , , ,G N T P S

 , , ,N S A B C

 ,T a b

:P
1. S ABC
2. A aA

3. B aB
4. C aC
5. A bA
6. B bB



7. c bC
8. A a

9. B a

10. C a
11. A b

12. B b

13. C b

and    1,2,...........13lab P 

        *1 234 567 89 10 11 12 13K    be a regular control on G.

    , | ,L G K www w a b  



Indian Parallel Grammars 

In the definition of matrix , programmed , time-varying , regular control , and 
random context grammars , only one rule is applied at any step of derivation . 
In this section  , we consider parallel application of rules in a context -free 
grammars (CFG).

Definition 8

An Indian parallel grammar is a 4-tuple                                   where the 

components are as defined for a CFG . We say that               holds in G for 
strings  x, y over                , if

 , , ,G N T P S
x y

N T

   *
1 2 1... , ,n n ix x Ax A Ax Ax A N x N T A   
1 1i n  for

1 2 1... , .n ny x wx w wx wx A w P  



i.e., if a sentential form x has an occurrences of the nonterminal A, and if           

is to be used it is applied to all A’s in x simultaneously.         is the reflexive ,

transitive closure of 

A w

*



   *
*| ,L G w w T S w  



Example 10

We consider the Indian parallel grammar: 

      , , , , .G S a S SS S a S  

Some sample derivations are 

S a
,S SS aa 

S SS SSSS aaaa  

   2 0 .
n

L G a n 

and

It is clear from this example that some non-context free languages can be 
generated by Indian parallel grammars. 
The other way round , the question is : can all context free languages (CFL) 
be generated by Indian parallel grammars  ? Since the first attempt to solve 
this was made in (Siromoney and Krithivasan . 1974) , this type of grammar is 
called an Indian parallel grammar.   
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